A discrete Lagrangian-based global-search method for solving satisfiability problems
نویسندگان
چکیده
Satisfiability is a class of NP-complete problems that model a wide range of real-world applications. These problems are difficult to solve because they have many local minima in their search space, often trapping greedy search methods that utilize some form of descent. In this paper, we propose a new discrete Lagrange-multiplier-based global-search method (DLM) for solving satisfiability problems. We derive new approaches for applying Lagrangian methods in discrete space, we show that an equilibrium is reached when a feasible assignment to the original problem is found and present heuristic algorithms to look for equilibrium points. Our method and analysis provides a theoretical foundation and generalization of local search schemes that optimize the objective alone and penalty-based schemes that optimize the constraints alone. In contrast to local search methods that restart from a new starting point when a search reaches a local trap, the Lagrange multipliers in DLM provide a force to lead the search out of a local minimum and move it in the direction provided by the Lagrange multipliers. In contrast to penalty-based schemes that rely only on the weights of violated constraints to escape from local minima, DLM also uses the value of an objective function (in this case the number of violated constraints) to provide further guidance. The dynamic shift in emphasis between the objective and the constraints, depending on their relative values, is the key of Lagrangian methods. One of the major advantages of DLM is that it has very few algorithmic parameters to be tuned by users. Besides the search procedure can be made deterministic and the results reproducible. We demonstrate our method by applying it to solve an extensive set of benchmark problems archived in DIMACS of Rutgers University. DLM often performs better than the best existing methods and can achieve an order-of-magnitude speed-up for some problems.
منابع مشابه
Trap Escaping Strategies in Discrete Lagrangian Methods for Solving Hard Satisfiability and Maximum Satisfiability Problems
In this paper, we present efficient trap-escaping strategies in a search based on discrete Lagrange multipliers to solve difficult SAT problems. Although a basic discrete Lagrangian method (DLM) can solve most the satisfiable DIMACS SAT benchmarks efficiently, a few of the large benchmarks have eluded solutions by any local-search methods today. These difficult benchmarks generally have many tr...
متن کاملDiscrete Lagrangian-Based Search for Solving MAX-SAT Problems
Weighted maximum satissability problems (MAX-SAT) are diicult to solve due to the large number of local minima in their search space. In this paper we propose a new discrete Lagrangian based search method (DLM) for solving these problems. Instead of restarting from a new point when the search reaches a local minimum, the Lagrange multipliers in DLM provide a force to lead the search out of the ...
متن کاملAn Efficient Global-Search Strategy in Discrete Lagrangian Methods for Solving Hard Satisfiability Problems
In this paper, we present an efficient global-search strategy in an algorithm based on the theory of discrete Lagrange multipliers for solving difficult SAT instances. These difficult benchmarks generally have many traps and basins that attract local-search trajectories. In contrast to trapescaping strategies proposed earlier (Wu & Wah 1999a; 1999b) that only focus on traps, we propose a global...
متن کاملA FAST GA-BASED METHOD FOR SOLVING TRUSS OPTIMIZATION PROBLEMS
Due to the complex structural issues and increasing number of design variables, a rather fast optimization algorithm to lead to a global swift convergence history without multiple attempts may be of major concern. Genetic Algorithm (GA) includes random numerical technique that is inspired by nature and is used to solve optimization problems. In this study, a novel GA method based on self-a...
متن کاملA Discrete Lagrangian - Based Global - SearchMethod for Solving Satis ability Problems
Satissability is a class of NP-complete problems that model a wide range of real-world applications. These problems are diicult to solve because they have many local minima in their search space, often trapping greedy search methods that utilize some form of descent. In this paper, we propose a new discrete Lagrange-multiplier-based global-search method (DLM) for solving satissability problems....
متن کامل